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SIAM Workshop on Integration of CAD and 
CFD (UC Davis, 1999)

Finite Element Meshes for CFD from CAD models

Typical CFD analysis (aircraft, 50 million elements):
• 10-20 minutes for surface meshing
• 3-4 hours for volume meshing
• 1 hour for actual flow analysis
• 2—4 weeks for “geometry repair”



Workshop on Mathematical Foundations of 
CAD (MSRI, 1999)

“The single greatest cause of poor reliability 
of CAD systems is lack of topologically 
consistent surface intersection algorithms.”

—Consensus opinion



Costs $1 Billion/year

—Tom Peters



Workshop on Mathematical Foundations of 
CAD (MSRI, 1999)

Piecewise Algebraic Surfaces,
Sederberg 1984

#1 greatest example of failed expectations in the 
history of CAGD



Division of Labor

• Computational Topology
§ UC Davis Mathematics Department

• strong low-dimensional topology 
• keen interest in computational topology

§ Joel Hass
§ Jesus De Loera  
§ Abigail Thompson  
§ Bill Thurston
§ Dmitry Fuchs
§ Mikhail Khovanov
§ Gregory Kuperberg



Division of Labor

• Computational Topology
• Homotopy Methods
§ Rida Farouki and Junzhe Miao



Division of Labor

• Computational Topology
• Homotopy Methods
• Exact geometry computation
§ Chee Yap



Division of Labor

• Computational Topology
• Homotopy Methods
• Exact geometry computation
• Computational Algebraic Geometry
§ Tom Sederberg, Jianmin Zheng, Eng-Wee

Chionh, David Cox



Division of Labor
• Computational Topology
• Homotopy Methods
• Exact geometry computation
• Computational Algebraic Geometry
• Global Differential Geometry
§ Robustly find all components
§ Gauss maps
§ Tom Sederberg, Xiaowen Song



Division of Labor
• Computational Topology
• Homotopy Methods
• Exact geometry computation
• Computational Algebraic Geometry
• Global Differential Geometry
• T-spline representation
§ Tom Sederberg, Jianmin Zheng, Xiaowen Song



Bi-cubic patch intersection



Trimming Curve



The Gap Problem



How many parametric curves of 
degree 2 are there?

x =
a2t

2 + a1t + a0

c2t
2 + c1t + c0

;   y =
b2t

2 + b1t + b0

c2t
2 + c1t + c0

But you can reparameterize the curve: t =
d0u + d1

d2u + d3

Total dimension is 9-4=5.



How many implicit curves of 
degree 2 are there?

a0x 2 + a1xy + a2y 2 + a3x + a4 y + a5 = 0

But you can assign any coefficient to be 1, so

Dimension  is 6-1=5.



How many parametric curves of 
degree 3 are there?

x =
a3t

3 + a2t
2 + a1t + a0

c3t
3 + c2t

2 + c1t + c0

;   y =
b3t

3 + b2t
2 + b1t + b0

c3t
3 + c2t

2 + c1t + c0

But you can reparameterize the curve: t =
d0u + d1

d2u + d3

Total dimension is 12-4=8.



How many implicit curves of 
degree 3 are there?

a0x3 + a1x
2y + a2xy2 + a3y3 + a4 x2 + a5xy + a6y2 + a7x + a8y + a9 = 0

But you can assign any coefficient to be 1, so

Dimension  is 10-1=9.



Dimension of the space of planar 
curves:
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Dimension of space of 3D surfaces:

d=2n^2
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Cubic Bezier Curve



Double Points
A degree n  rational curve has

double points.
2
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Dimension of space of planar 
curves:

(n-1)(n-2)/2
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Simplified Implicit Equation

f 3 + g3 + (ax + by + c) fg = 0
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Self-Intersection of Bicubic Patch



Self-Intersection of Bicubic Patch



Problem 1.

Can you write the implicit equation of a bi-cubic patch in a 
simpler form;  one that involves fewer (56?) coefficients?

Possible approach:  Find a Grobner basis of the 
singular locus of the patch:  I=<F1, F2, …, Fn> and 
write the implicit equation as a quadratic form in terms 
of the Grobner basis polynomials. 



Simplified Implicit Equation

f 3 + g3 + (ax + by + c) fg = 0



Problem 2:
Make the method of moving 

surfaces robust
• Surface implicitization using resultants fails 

in the presence of base points.
• Method of moving surfaces seems to always 

work, but no proof (plus it is slow).
• How? Extend to surfaces the idea of a mu-

basis for curves.



Problem 3: 
Find a starting point on each 

component of the intersection curve.
• Collinear normal theorem 
• Bezier clipping



Collinear Normal Theorem

• If two planar curves intersect twice (and 
don’t turn more than 90 degrees) there 
exists a line which is perpendicular to both 
curves.

—Sederberg, Katz, Christiansen 1988



Collinear Normal Theorem



Collinear Normal Theorem

• If two surfaces intersect in a closed loop 
(and no two normals to a patch are 
orthogonal) there exists a line which is 
perpendicular to both surfaces.

—Sederberg, Katz, Christiansen 1988



Loop Detection



Bezier Clipping

• A method for robustly finding all real zeros 
of systems of polynomial equations, over a 
given domain.



Polynomial Root
Finding in Bernstein
Form



Curve Intersection using 
Bezier Clipping



Curve Intersection using 
Bezier Clipping



Curve Intersection using 
Bezier Clipping



Bezier Clipping
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Ray-patch Intersection



Curve-Surface Intersection



Curve-Surface Intersection



Curve-Surface Intersection



Curve-Surface Intersection



Curve-Surface Intersection



Collinear Normal Theorem



Finding a Collinear Normal Line
(Ps(s,t) × Pt (s,t)) × (Qu(u,v) × Qv (u,v)) = (0,0,0)
(Ps(s,t) × Pt (s,t)) × (P(s,t) − Q(u,v) = (0,0,0)

Solutions (s,t,u,v) are parameter values where 
collinear normal lines pass.



Tangential intersections



Problem 4
Explore the following conjecture

• The probability is infinitesimally small that 
two bicubic patches will intersect 
tangentially along a curve that is not 
parametric (unless the surfaces are 
intentionally designed to do so)



Problem 5
Filling the Gaps using T-splines



Repairing a B-spline model



Close-up of Gap



Gap closed using T-splines



T-spline control grid





T-spline control grid





T-spline control grid for Dart





T-spline control grid





T-spline control grid for trimmed 
patch





Rough Idea of T-Spline Control 
Grid for Surface Intersections



Chee Yap

















Objectives

• re-visit problems of surface intersections and 
trimmed surfaces with a fresh perspective

• multi--disciplinary research team, familiar with 
practical needs of CAD software and the latest 
mathematical research in geometry and topology. 

• Industry suffers exasperation and wasted time 
using commercial CAD systems, while the CAD 
research community has largely forsaken 
fundamental issues and sought refuge in simpler 
problems leading to easy publications.



• Most surface intersection procedures in current 
use are based either upon that converge
montonically to the surfaces, or numerical tracing 
procedures coupled with a means of identifying 
suitable start points. The former approach 
encompasses {\it subdivision surfaces\/} as well as 
the B\'ezier/B--spline surfaces. However, it 
produces only polygonal approximations of the 
intersection curve in Cartesian space ---
information on its behavior in the surface 
parameter domains, required for surface trimming 
operations, is missing. The latter approach has the 
disadvantage of requiring finite--size steps in the 
tracing procedure, which may incur errors in 
resolving the topological connectivity. Neither 
method currently offers a rigorous basis for 
developing ``water--tight'' trimmed surface 
representations.



Computational Topology

• UC Davis Mathematics Department
§ strong low-dimensional topology 
§ keen interest in computational topology

• Joel Hass
• Jesus De Loera  
• Abigail Thompson  
• Bill Thurston  
• Dmitry Fuchs
• Mikhail Khovanov
• Gregory Kuperberg



Computational Algebraic Geometry

• David Cox, Amherst College
• Ron Goldman, Rice University



• Mesh generation:  NASA, Boeing, Ford
§ Geometry preparation and repair takes weeks or 

months
§ CADFIX reads in CAD model and fixes based 

on heuristics





Bi-cubic patch intersections



Trimming curves



Performance

• “5%-15% of time spent in performing a 
Boolean operation using trimmed surface 
patches is spent fixing gaps.”

• —Tim Strotman, EDS



Diagonal Curve:  s=u, t=u



SIAM Workshop on Integration of CAD and 
CFD (Davis, April 1999)

FE mesh generation from CAD models

• Errors or inconsistencies plague most CAD models
• Primarily due to surface intersection algorithms
• Meshing algorithms are reliable, given “correct” CAD input
• Commercial software (e.g., CADfix) detect and fix defects in 

CAD models, relies on heuristics; no guarantee of success 
• Problem occurs in all types of engineering analysis



Diagonal Curve:  s=u, t=u



Diagonal Curve:  s=u, t=u


